Time dependence of X-ray polarizability of a crystal induced by an intense femtosecond X-ray pulse
نویسندگان
چکیده
The time evolution of the electron density and the resulting time dependence of Fourier components of the X-ray polarizability of a crystal irradiated by highly intense femtosecond pulses of an X-ray free-electron laser (XFEL) is investigated theoretically on the basis of rate equations for bound electrons and the Boltzmann equation for the kinetics of the unbound electron gas. The photoionization, Auger process, electron-impact ionization, electron-electron scattering and three-body recombination have been implemented in the system of rate equations. An algorithm for the numerical solution of the rate equations was simplified by incorporating analytical expressions for the cross sections of all the electron configurations in ions within the framework of the effective charge model. Using this approach, the time dependence of the inner shell populations during the time of XFEL pulse propagation through the crystal was evaluated for photon energies between 4 and 12 keV and a pulse width of 40 fs considering a flux of 10(12) photons pulse(-1) (focusing on a spot size of ∼1 µm). This flux corresponds to a fluence ranging between 0.8 and 2.4 mJ µm(-2). The time evolution of the X-ray polarizability caused by the change of the atomic scattering factor during the pulse propagation is numerically analyzed for the case of a silicon crystal. The time-integrated polarizability drops dramatically if the fluence of the X-ray pulse exceeds 1.6 mJ µm(-2).
منابع مشابه
مقایسه گسیل یونی و پرتوی ایکس سخت بین نیتروژن و آرگون در دستگاه پلاسمای کانونی نوع مدر
In this study, some characteristics of a Mather type Plasma Focus (PF) device such as a discharge current, pinch time, ion flux and hard x-ray intensity has been investigated simultaneously in argon and nitrogen gases separately for various operating gas pressures and charging voltages of capacitor bank. It was observed that pinch phenomena was energy and pressure dependent in current sheath as...
متن کاملHetero-site-specific X-ray pump-probe spectroscopy for femtosecond intramolecular dynamics
New capabilities at X-ray free-electron laser facilities allow the generation of two-colour femtosecond X-ray pulses, opening the possibility of performing ultrafast studies of X-ray-induced phenomena. Particularly, the experimental realization of hetero-site-specific X-ray-pump/X-ray-probe spectroscopy is of special interest, in which an X-ray pump pulse is absorbed at one site within a molecu...
متن کاملOptimum driving a Z-pinch for soft X-Ray lasers
A capillary plasma z-pinch as an alternative active medium of soft X-Ray lasers was studied experimentally and theoretically. The theoretical analysis was based on the self consistent solution of the so called “snow plow” model. The dynamics of pinched plasma is determined by the capillary parameters and by the time dependence of electrical current passing through it. The current time dependenc...
متن کاملA split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography
In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL) operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/σI) must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse inten...
متن کاملاثر محافظتی سیتوکین SCF در مهار آپوپتوز ناشی از اشعه X در سلول های HL60
Background and purpose : Âpoptosis or programmed cell death is a process of cell suicide. Ïonizing radiation is one of the stimuli for apoptosis, acting through DNÂ damage. Ïn the present study, effects of X-rays induced apoptosis in HL60 cells, as well as the protective effects of Stem Çell Factor (SÇF) in inhibiting X-ray induced apoptosis have been evaluated. Materials and methods : HL6...
متن کامل